The Future of Building Materials: Passive Design Utilizing the Energy Storage Capability of Phase Change Materials

Vincent Blouin, PhD

Assistant Professor Architecture / Materials Science & Engineering Clemson University

Charleston | Building Enclosure Council Monthly Meeting Charleston, SC September 28th, 2012

- Introduction / Phase Change Materials (PCM)
- Integration of PCM in buildings
- Cost of PCM
- Development of design guidelines
- Materials research on solid-solid PCM

Energy Consumption

Energy is fundamental for today's society: Nuclear, Fossil Fuel, Wind, Solar, Hydropower, etc

• United States Primary energy consumption per sector. (2010 Buildings Energy Databook, US. DOE, March 2011)

1 Quadrillion British Thermal Unit (BTU) = 8 Billion Gallons of Gasoline = 50 million tons of coal.

50 Million tons of coal = a pile 10 feet thick, one mile wide and 3.3 miles long.

Energy Consumption

1.1.4 2008 U.S.	Buildings Energy End-Use Splits, by Fuel Type (C	Quadrillion Btu)
	Natural Fuel Other Renw. Site	Site
	Gas Oil (1) LPG Fuel(2) En.(3) Electric	Total Percent
Space Heating (5)	4.96 0.78 0.26 0.11 0.56 0.71	7.37 36.9%
Lighting	2.01	2.01 10.0%
Space Cooling		1.78 8.9%
Water Heating		2.58 12.9%
Refrigeration (6)	Onnortunities for	0.86 4.3%
Electronics (7)	opportunities for	0.78 3.9%
Ventilation (8)	solar energy	0.53 2.7%
Computers		0.39 2.0%
Cooking		0.67 3.3%
Wet Cleaning (9)	But it's not easy!	0.37 1.8%
Other (10)		1.43 7.1%
Adjust to SEDS (11)		1.24 6.2%
Total	8.22 1.11 0.67 0.15 0.59 9.27	20.00 100%

2008 "site-to-source" electricity conversion = 3.16 (2010 Buildings Energy Databook, US. DOE, March 2011)

Energy Storage

- Use "heavy" materials to <u>absorb</u> extra heat when available, <u>store</u> it, and <u>release</u> it when needed.
- Heavy materials (stones, concrete, bricks)
- The process is reversible and also works for passive cooling.
- Terminology:
 - Energy storage, heat storage
 - Thermal mass
 - Thermal inertia
 - Activation of thermal mass
 - Latent heat vs. sensible heat
 - Phase change materials (PCM)
 - Evaporation
 - Heat capacity, specific heat of materials

Two ways to store energy

- Sensible heat: energy is stored in the form of heat by raising the temperature of the storing material.
 - stones, concrete, and bricks
- Latent heat: energy is stored in the form of a change of phase of the storing material. Examples:
 - water absorbs a lot of energy when evaporating (i.e., changing phase from liquid to vapor) and releases a lot of energy when condensing (i.e., change phase from vapor to liquid)
 - phase change materials absorb heat when changing phase (usually from solid to liquid)
- Both ways are used in buildings for passive heating and cooling. Sensible heat is used all the time. Use of latent heat is not as popular because it is not as straight forward and usually requires more expensive materials.

Typical Thermal Mass Storage Materials

		Temperature i	ncrease: 1°F	
Material	Typical thickness (in)	Volume to store 100 Btu (ft ³)	Weight to store 100 Btu (lbs)	Comments
Water	N/A	0.50	31	Inexpensive, container required
Concrete	2-18	1.00	147	Also structural
Brick	4-18	1.28	156	Also structural
Concrete Masonry Unit (CMU)	12-18	1.44	136	Also structural
Stone (loose fill)	4-12	1.78	156	Inexpensive, container required

Benefits

High heat storage capacity to weight ratio High heat storage capacity to thickness ratio Greater architectural freedom

¹/₂"-thick gypsum board (drywall) with 25% PCM (right) can store as much energy as a 4"-thick brick wall of same surface area

Three Types

Macro-encapsulation

Micro-encapsulation

Form-stable PCMs

updoid

Three Types

Macro-encapsulation

BioPCM[™] layered on top of insulation in a standard wood frame structure.

BioPCM[™] is affordable, earth-friendly and easy-to-install. It's the next generation of high-performance energy savings material.

Three Types Micro-encapsulation

Mixed in plaster

Mixed in cellulose insulation

PCM materials

- ~2000 materials reported in literature
- ~200 materials appropriate in building
- Perlite embedded with hydrated calcium chloride
- Paraffin compoun ٠
- Polyalcohols (do n
- Fattic acid with po
- Polyethylene glyco

 Paraffin compounds (linear crystalline alkyl hydrocark 	oons)		Paraffin
 Polyalcohols (do not leak but volatile during phase ch Fattic acid with polymeric encapsulation (PMMA) Polyethylene glycol (PEG) 	organic Compound		Fatty Acids
Phase C	hanga Matariala Inargania Compoun		alt Hydrates
Phase C	Material	Melting point (°C)	Latent heat (kJ/kg)
	K ₂ HPO ₄ ·6H ₂ O	14.0	109
	FeBr ₃ ·6H ₂ O	21.0	105
Latent heat capacity	Mn(NO ₃) ₂ ·6H ₂ O	25.5	148
	FeBr ₃ ·6H ₂ O	27.0	105
50kJ/kg - 200kJ/kg.	CaCl ₂ ·12H ₂ O	29.8	174
	LiNO ₃ ·2H ₂ O	30.0	296
25kJ/kg and 50kJ/kg when mixed in	construction m LiNO ₃ ·3H ₂ O	30	189
	Na ₂ CO ₃ ·10H ₂ O	32.0	267
	Na SO 10H-O	32.4	241
200 kJ/kg = 100 BTU/lb = 25,000 cal/lb	KFe(SO ₄) ₂ ·10H ₂ O CaBr ₂ ·6H ₂ O	32.4 33 34	173 138
	LiBr ₂ ·2H ₂ O	34	124
	Zn(NO ₃) ₂ ·6H ₂ O	36.1	134
	FeCl ₃ ·6H ₂ O	37.0	223

How do they work?

Melting temperature T_m is between 15°C and 30°C depending on the application. There exist different PCM materials for any desired melting temperature.

Energy stored

The process is 100% reversible. The temperature decreases as the energy is released.

Use of PCM

Purpose: Temperature regulation

- Buildings
- Transportation
- Electronics
- Clothing

Examples of Buildings with PCM

Dover House, MA, 1947

<u>Setup</u>

(source: Sherburne, 2009)

- PCM Glauber's Salt (Na₂So₄. 10H₂0)
- Melt temperature: 89°F
- 18 solar collectors, 21 Tons of PCM.
- \$20,000
- "Complete Comfort" for two winters without a fuel bill
- PCM stratified during the third winter.

City of Melbourne's Council House

Examples of Buildings with PCM

Steve Glenn's Santa Monica house, first house platinum LEED

First Place 2007 Solar Decathlon: Technische Universität Darmstadt

2009 Solar Decathlon Penn State

New Products

http://glassx.ch/index.php?id=578

Increased Insulation vs. PCM

Increasing Insulation is known to be beneficial

The higher the R-value, the low the heat gain/loss HOWEVER, not proportional!

 $Q = A(T_{out}-T_{in})/R$

where Q = heat gain or loss

A = surface area

T_{out}, T_{in} = Temperatures

R = R-value

The benefit of additional insulation decreases with the amount of insulation.

Increased Insulation vs. PCM

Benefits of PCM

Most studies found that PCM improve building energy performance

- by reducing peak-hour cooling loads
- by shifting peak-demand time.

Can reduce heat and cooling load between 10 and 30%

Financial payback period is 5 to 10 years

Energy payback period is 5 to 10 years

Save \$ since save heat and cooling energy

Save \$\$ if on-peak/off-peak billing cycle is adopted but does not help the planet

Cons of PCM

New technology No guidelines exist / limit knowledge Reliable durability is still uncertain

Example of Cost of PCM

Standard 2,434 sq ft house with 730 sq ft Basement, Gas Furnace, Central Air-conditioning

Heating and cooling cost per yr. Location: Louisville KY ⁿ	
1643 therms Natural Gas @ average retail price of \$1.30 per therm ⁱⁱⁱ	\$2136.00
10623 kWh @ average retail price ^{iv} 9.45	\$1004.87
Yearly Total	\$3140.87
Monthly expenditure	\$ 262.67

PCM 2,434 sq ft house with 730 sq ft Basement, Gas Furnace, Central Air-conditioning

Heating and cooling cost per yr. Location: Louisville KY	
1150 therms Natural Gas @ average retail price of \$1.30 per therm ^v	\$1495.00
7436 kWh @ average retail price ^{vi} 9.45	\$702.70
Yearly Total	\$2197.70
Monthly expenditure	\$ 183.14

Yearly Energy Savings for home with PCES BioPCM = \$943.17

http://www.phasechange.com/whitepages-page.php

Some Additional Benefits from the use of BioPCM sheet:

- \cdot Tax benefits
- \cdot Lower cost for HVAC equipment
- \cdot Lower construction costs
- · Energy Efficient Mortgage
- · Reduced energy costs

Most beneficial with different billing cycle:

\$0.12 /kWh during day \$0.07 /kWh during night

• Increase knowledge by developing design guidelines for integrating PCM in buildings.

Research Questions

- For any given climate, what are the optimum:
 - PCM melting temperature
 - \circ amount of PCM
 - \circ location of PCM
- What other parameters affect the integration of PCM.

National Science Foundation

Experimental Design

- 1)Control
 - Annual Energy Consumption without PCM
- 2) Treatment
 - Annual Energy Consumption with different combinations of PCM
 - a) melt temperature
 - b) energy storage capacity
 - c) location within the walls
 - d) location within the room

<u>Data collection</u> Finite Element Analysis (FEA) Computational Fluid Dynamics (CFD) Whole building energy modeling software - EnergyPlus

Numerical modeling

Modeling the thermal behavior of PCM in building is validated by comparing results obtained by different techniques: Abaqus (FEA) vs. EnergyPlus (FD)

Example numerical simulation Latent heat of PCM: 20 kJ/kg

Benefits of PCM:

- Smaller temperature fluctuations
- Smaller duration at extreme temperatures
- Reduced cooling/heating load

<u>Base Building Model</u> - ANSI/ASHRAE/IESNA Standard 90.1/90.2 – 2004 - ASHRAE – Advanced Energy Design Guides

a) Floor Area: 576 Sq ft. Lightweight construction

b) 30% window/wall ratio East/west orientation

d) Minimum Air Change Rate 0.35 AC/H

Dependent Variable

Annual Energy Consumption (Y)

Regression Model

Independent Variables:

a) PCM Melting Temperature $(X_1) - 18-29$ degrees b) PCM Enthalpy $(X_2) - 50$, 100, 150 KJ/Kg

Dependent Variable

Annual Energy Consumption (Y)

Regression Model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$$

Independent Variables:

a) PCM Melting Temperature $(X_1) - 18-29$ degrees b) PCM Enthalpy $(X_2) - 50$, 100, 150 KJ/Kg c) Layers (X_3) – Interior, Interstitial, Exterior

Dependent Variable

Annual Energy Consumption (Y)

Regression Model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4$$

Independent Variables:

a) PCM Melting Temperature (X₁) – 18-29 degrees
b) PCM Enthalpy (X₂) – 50, 100, 150 KJ/Kg
c) Layers (X₃) – Interior, Interstitial, Exterior
d) Surfaces(X₄) – High Radiation, Low Radiation, All Surfaces

Dependent Variable

Annual Energy Consumption (Y)

Regression Model

 $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5$

Independent Variables:

a) PCM Melting Temperature $(X_1) - 18-29$ degrees b) PCM Enthalpy $(X_2) - 50$, 100, 150 KJ/Kg c) Layers $(X_3) -$ Interior, Interstitial, Exterior d) Surfaces $(X_4) -$ High Radiation, Low Radiation, All Surfaces e) Length to Width Ratio $(X_5) - >>1$, 1, <<1

Factorial Design

Factors (Independent variables)	Levels
PCM Melt temperature	3 (18, 19, 20) (21, 22, 23) (24, 25, 26) (27,28,29)
Location in the room	3 (High Radiation, Low Radiation, All walls)
PCM enthalpy	3 (20 KJ/Kg, 30 KJ/Kg, 40 KJ/Kg)
Location within the wall	3 (Interior, Interstitial, Exterior)
Length to Width Ratio	3(>>1, 1, <<1)

- **Control**: Building without PCM
- **Treatment**: Building with different combinations of PCM
- **Dependent Variable**: Annual Energy Consumption (Heating & Cooling)

• Independent Variables: 5 Factors - 3 levels each = 3⁵ experiments = 243 experiments * 4= 972 Experiments (One Climate).

Goal: The development of response curves and design guidelines for the use of PCM in buildings.

U.S. Department of Energy: Climate Zones

U.S. Department of Energy: Representative Cities

972 experiments * 15 representative cities = 14580 experiments

Life Cycle Analysis of PCM

Life Cycle Analysis consists of analyzing all aspects of a product from craddle to grave in terms of cost, energy and environmental impact.

"Going green" is sometimes misleading when embedded energy is not considered.

Always beneficial for the owner but not always for the planet.

Macro-encapsulation \rightarrow low embedded energy Micro-encapsulated \rightarrow large embedded energy

X	9-0-	Ŧ								Copy of	PCMMicr	oencapsulati	onprocess	s9-19 - Microsoft Ex	cel		
File	File Home Insert Page Layout Formulas Data Review View																
Ê	🔏 Cut		Helvetica	a -	10 - A	Ă	≡≡≡	≫⁄	📑 Wrap Text	General	*	5		Euro	Standard_ecoin	Temperaure	*
Paste	ia Copy → Format Pa	ainter	BI	<u>U</u> -	• 🔌 •	<u>A</u> -			📑 Merge & Center 🝷	\$-%,	00. 0. → 0.♦ 00.	Conditional Formatting *	Format as Table *	wissenschaft	Normal	Bad	 ▼ ▼
	Clipboard	- E		Font		- Gi		Alignme	ent 🕞	Number	E.			S	tyles		
	H58	-	(f _x =	=H57*H59												
1		- , F	G	' ' 1 H		J	2 '	· I	3 3 4 N Q P	Q F	- , - R S -	T U	5 V	6 W		A AB	A

			Step 1							Step 2					S
Prep	aration of I	Melami	ne-Formald	ehyde	e Prec	ondensate	•		Emulsi	fication & En	capsulati	on	Drying ar	nd Hard	e
Input Energy 0.81 Output Energy 0.0022 Mass 0.0036 Molecular Weight 0.0300 Moles of Formaldel/0.11988 aq. Formaldel/yde (3	Mulkg 6 MJ Step 1: kg Melan 3 kg km 112 mol 5-39%)	t. 2.5g of nime is 1 to 3.6g of	specific heat melamin specific heat Formald specific heat H ₂ O T _{initia} 1 T _{final} 1	n∉ 156.11 le 36.69 4.184 20 70	Jimol K Jimol K Jig K (°C) (°C)	density (formalde density (Melamin stirring rate, N ³ N ₆ D ₄ ⁵ Mechanical Ener	1.09 1.573 1000 4 5.905E-06 0.0371536	a cm ³ a cm ³ s ⁻¹ m Watts	Add solutions 1,2,&3 at 31- 33°C. to prepare	Energy Pre-conder Energy solution D Energy solution T Energy solution T Reaction time T _{initial} T _{finitial}	0.014608365 4.310543698 0.01519408 2.974761164 900 20 33	MJ MJ MJ seconds (°C) (°C)	specific heat melamine specific heat Formaldehyde specific heat H ₂ O specific heat H ₂ O specific heat n-paraffin T _{initial}	156.11 36.69 4.184 478.254519 1.712 33	۲۲ ۲۲ ۲۲ ۲۲ ۲۲ ۲۲
Input Energy 3.2 Output Energy 0.008 Mass 0.0025 Molecular Weight 0.1261 moles of Melamine 0.0198	Mulkg MJ Kg kg 239 mol	aldehyde on and 5g ter. At stir system rpm for 1	Reaction time Q1 Melamine Q1 Formaldehyde	5400 154.72 659.76	seconds J J	Q, Input Energ Mechanical Er Pre-Energy Sum	0.0018605 0.0002006 0.0109241 0.01299	MJ MJ MJ MJ	emulsion solution Stir system at 2,0000 rpm for 10-15 min.	stirring rate. N ³ density N ₆ D ₆ ⁵ Mechanical Energy	37037.03704 1.35 4 5.9049E-06 1.18098	s ⁻¹ a cm ³ M Watts	Tinal Reaction time Total Mass Q n-paraffin Q _{Tastal} Input Energy	80 18000 2413.92 0.00241392	°C se J
Input Energy 0.0016 Output Energy 0.0000 Mass 0.0005 Molecular Weight 0.018 Water	Mulkg 181 MJ kg Step 2 kg/mc system	2: Cool n to 33°C	ul water Q, Input Energy Pre-Energy	1046 = 1860.5 0.0109	J J MJ	Time Heat Loss Added energy Total Input En	1.5 0.0833333 0.0016232 0.01461	h assume MJ MJ	add droplets of the M-F precondensate solution	Pre-Energy Step 1 Mechanical Energy Sum Time Heat Loss Added energy	7.31510/308 0.001062882 7.31617019 0.25 0.020833333 0.152420212	MJ MJ MJ h assum			
Solution One Prec	are a solution	Prepa	ration of Em	ulsio	<mark>n</mark> d which	becomes ioniz	zed in the	e water		Reaction time stirring rate. N ³	900	seconds			
Input Energy 1.42150 Output Energy 2.11125 Mass 1.48514 Molecular Weight 0.202	MJkg '43 MJ 351 kg Step 1: kg/km p(SM/	: Add 2.5g A)-[30% in	Reaction time stirring rate. N ³ density N ₂	1800 1000 1.35 4	seconds s ⁻¹ a cm ⁻¹	Pre Energy Mechanical Er Sum	2.1112574 5.74E-05 2.11131	MJ MJ MJ	After 15 minutes decrease stir	density Ns Ds ⁵ Mechanical Energy	1.35 4 5.9049E-06 0.03188646	a cm³ m Watts			
Poly[Styrene-alt-Mal Sodium Salt (Avg. MY Input Energy 0.0016 Output Energy 0.0000	H C ACIDJ 7 120,000, 120,000 MJ of Wal 0315 MJ adjust	1W= 0] to 57.5g ter. Then t pH to 5	D _a ° Mechanical Energy Pre Energy	6E-06 0.0319 2.1113	m Watts MJ	Time Heat Loss Added energy Total Input En	0.5 0.0416667 0.0879715 4.3105437	h assume MJ	rate to 400- 600 rpm	Mechanical Energy Sum Time	2.86978E-05 2.86978E-05 0.25	MJ MJ h			
Mass 0.0575 Molecular Weight 0.018 Water	kg kg/km	colution of	t water and hydr	ophillic	colloid	which become	S 100170	dun		Heat Loss Added energy Total Input Energy	0.020833333 5.97871E-07 2.92957E-05	assume MJ	1/12 of heat is lost per hour		
EIEI	are a second s	ic charge	opposite that of	f the co	lloid of	the first solutio	n	um		Energy	7.468619698	мJ			

Ready Page: 1 of 2

Copy of PCMMicroencapsulationprocess9-19 - Microsoft Excel

																	-	
V	iew																a 🕜 c	_ é
≡ 8		🖥 Wrap T	ext	General		- -		Euro	Stand	ard_ecoin Tempe	raure			Σ	AutoSum Fill +	2	ĥ	
•		Merge	& Center 🝷	\$ - %	, <u></u> €.0	Conditio	nal Format as Ig * Table *	wissenschaft	Norn	nal Bad		Ţ L	sert Delete Form	nat 🖉	Clear 🔹	Sort & Fin Filter * Sele	d & ect ≠	
	Alignment		E.	Num	ber	G.			Styles				Cells			Editing		
									-									_
- 1	· · · ·	3			4	· · · · ·	5	6				· · ·	8		9		10	-
	M	N I	P	Q	R S	T U	V	W	X	Z AA	AB	AC AI	AE	AF	AG	AH AI	ÂJ	
1							Ste	n 2				Ster	3					
							0.01	P 2				Oler,						
mal	dehyd	e Prec	ondensa	te		Emuls	ification 8	Encapsulat	ion	Drying a	nd Hard	lenin	g of Capsul	e Shel	I .			
							Energy Pre-c	onde: 0.014608365	MJ	specific heat melamine	156.11	Jimol I	stirrina rate. N³	1000	s ⁻¹			
t melan	nine 156.11	Jimol K	density (forma	alde 1.09	a cm ³	_	Energy soluti	on D(4.310543698	MJ	specific heat Formaldehyde	36.69	Jimol I	density	1.35	a cm ³			
t Forma	alde 36.69	Jimol K	density (Melai	mir 1.573	a cm ³	Add solutions	Energy soluti	on 1(0.01519408	MJ	Ispecific heat H ₂ U	4.184	Jig K	N,	4	-			
. 120	4. 104	(°C)	stirrina rate. N	4	S'	1,2,&3 at 31-	Beaction time	900	seconds	specific heat p-paraffin	1 712	Jannon	Mechanical Energy	0.02189	Watts			
	70	(°C)	D.5	5.905E-06	m	33°C. to	T _{initial} 1	20	(°C)	popularity parameters		Jimol I	C	0.00100				
			Mechanical E	ner 0.0371536	Watts	prepare	Teral 1	33	rci	Tinitial	33	°C						
						emulsion	stirring rate N ³	37037.03704	s ⁻¹	T _{final}	80	°C	Emulsion Enerav	7.46862	MJ			
e	5400	seconds	Q, Input En	erc 0.0018605	MJ	solution Stir	density	1.35	a cm ³	Reaction time	18000	sec	Mechanical Energy	0.00057	MJ			
			Mechanical	Er 0.0002006	i MJ	system at	N,	4		Total Mass			Input Energy	0.00241	MJ			
	45 4 70		Pre-Energy	0.0109241	MJ	2 0000 rpm fo	D. ⁵	5.9049E-06	m	Q n-paraffin	2413.92	J	Sum	7.4716	MJ			
3 Jacuala	154.72	J	Cum	0.01200	M1	10-15 min	Mechanical E	. nerg j 1.18098	Watts	D Jacob Fassar	0.00241202	hd I	Time	E				
nyue	10/6	3	Sum	0.01233	MJ	Then slowly	Pre-Epergu S	ten 1 7 315107308	м	Getatel Input Chergy	0.00241352	MJ	Heatloss	0.41667	2001000	1/12 of best is los	t per bour	
	-	0	Time	15	h	add droplets o	Mechanical E	nep 1 7.313107300	MI				Added epergy	2 11217	MI	ILZ OF HEALTS IUS	. per noul	
nerau	1860.5	1	HeatLoss	0.0833332	assume	the M E	Sum	7 31617019	MJ			Т	tal Energy Consu	m 10 585	MJ	for 30 a of PCM		
	1000.0	-	Added energy	0.0016232	MJ	procondoncat		1.01011010				- · ·	Line gy conse					
						brecondensat	e											

			Added energy	0.0016232	MJ	procondoncato									
v	0.0109	MJ	Total Input En	0.01461	MJ	precondensate	Time	0.25	h		for 1 kg of PCM	320.751	MJ		
						solution	Heat Loss	0.020833333	assum		2	0.32075	BJ		
							Added energy	0.152420212				0.00032	TJ		
							Total Input Energy	7.468590402	MJ						
											solar radiation	200	Wim2		
of Em	nulsio	n					Reaction time	900	second		roof	150	m2		
rophilli	c colloid	d which	becomes ioni	zed in th	e water		stirring rate, N ³	1000	s ⁻¹			30000	W		
e	1800	seconds	Pre Energy	2.1112574	MJ	After 15	density	1.35	a cm ³			864	MJ		
N ³	1000	s ⁻¹	Mechanical Er	r 5.74E-05	MJ	Aller 15	N,	4							
	1.35	a cm ⁻¹	Sum	2.11131	MJ	minutes	D,5	5.9049E-06	m		Wall	400	m2		
	4					decrease stir	Mechanical Energ	0.03188646	Watts		Wall 1 cm	4	m3		
	6E-06	m				rate to 400-						4000	kg		
Energy	0.0319	Watts	Time	0.5	h	600 mm	Mechanical Energ	2.86978E-05	MJ		30% PCM	1200	kg		
			Heat Loss	0.0416667	assume	looo ipin	Sum	2.86978E-05	MJ		Manufacturing energy	384901	MJ		
	2.1113	MJ	Added energy	0.0879715											
			Total Input En	a 4.3105437	MJ		Time	0.25	h		Savings % due to PCM	0.1	%		
							Heat Loss	0.020833333	assume	1/12 of heat is lost per hour		86.4	MJ per	day	
							Added energy	5.97871E-07				4454.87	days		
							Total Input Energy	2.92957E-05	MJ		PAY BACK	37.12	years	\$	
nd hydr	ophillic		which become	es ionize	ed in		Total Emulsion	7.468619698	мј						
$\frac{1}{100}$	100 CO		Density TDI	1005			Linergy								
ւր(Բն)	476.20	JULIE	Density TDI	1.223	a cm ³						OF 35 G	KA I	2020	DTU	
	4.184	JIGIN	density PPG	1.004	a cm ⁻³						JC 2.374761164	MJ	2820	810	
Insitu-P	olymeriz	zation of	UF / EE /	Payback	XCh	iemical 🖉 XEle	ctricity X X	Complex Coace	ervation			16.4 I	10024		•
													III 🗆	Ⅲ 68% ─	

Synthesis and Characterization of Solid-Solid PCM

Background

- Solid-liquid PCM require encapsulation, are costly and have high embodied energy.
- Solid-solid PCM (SSPCM) are expected to be better alternatives.
- PEG-PU is a PCM polymer made of Polyethylene Glycol (PEG) and a polyurethane polymer (PU) or cellulose diacetate (CDA).
- Energy storage and release are due to change of phase from the semicrystalline phase to the amorphous phase of PEG.
- When grafted to a backbone polymer, the amorphous PEG remains solid at high temperature.

Solid-Solid Phase Transformation by cross-linking

Increase temperature

Synthesis and Characterization of Solid-Solid PCM

Research goals

- Understand the synthesis process of PEG-PU and PEG-CDA.
- Characterize thermo-mechanical properties.
- Understand the phase change process in order to control the phase change temperature, maximize enthalpy, optimize mechanical properties, and minimize environmental impact.

Why focus on Polyethylene Glycol (PEG) as a PCM polymer?

- Non-toxic, biocompatible and biodegradable
- Hydrophilic
- -OH end groups allow easy chemical modification
- Crystallizes easily thanks to simple linear polymer chain
- Ample production at various molecular weights from 0.3 to 10,000 kg/mol

ARCHITECTURE FOCUS

Synthesis

PEG-PU Synthesis

- PU includes isocyanate groups (NCO) and hydroxyl groups (OH)
- Dissolve PEG by 1/3 wt%
- Heat to 50-60°C and purge with Nitrogen
- Add stoichiometric amounts of TDI and BDO
- Reflux for 30 minutes
- Before the gelation occurs pour into mold and either place in oven or hot press
- Let cool until sample gel hardens

PEG-CDA

- PEG grafted onto the Backbone of Cellulose Diacetate (CDA)
- Cellulose Diacetate is a thermally stable polymer that remains intact above PEG melting temperature

44

Length of chain and crystallization

- Smaller molecular weight of PEG leads to shorted chains
- Shorter chains result in lower phase change temperature (which is desirable)
- However, steric hinderance reduces length useful chain where crystallization occurs, which reduces the enthalpy / latent heat (which is not desirable)
- One goal is to reduce effect of steric hinderance

Differential Scanning Calorimetry (DSC)

• Measure melting and crystallization temperatures and enthalpy values

Polarized Optical Microscopy (POM)

- POM is used to visualize and identify the crystal structure
- At room temperature, both pure PEG and PEG-PU show spherulites
- Spherulites in PEG-PU are smaller because hard segments interfere with PEG crystalline behavior
- At 70°C, the spherulites disappear since crystals have melted

Dynamic Mechanical Analysis (DMA)

• DMA is used to characterize the viscoelastic behavior of PEG-PU over temperature range

Summary

- Research project involving students and faculty from architecture and engineering collaborate to identify best materials and practice
- This on-going project has the potential to promote use of PCM by providing a unified set of design guidelines (reduced need of engineering studies)
- PCM can reduce the energy footprint of buildings. However:
 - PCM have high initial cost
 - Some PCM have large embodied energy
- PCM should be a common construction material in the future

Acknowledgement

This research is partially supported by the National Science Foundation (Grants # CMMI-0927962). The views presented here do not necessarily reflect those of our sponsors whose support is gratefully acknowledged.

National Science Foundation

References

- 1. US. DOE, 2010 Buildings Energy Databook, March 2011
- 2. Michael C. Baechler & Pat M. Love , *High Performance Home Technologies-Guide to Determining Climate Regions by County*, August 2011.
- 3. George Lane, Solar Heat Storage: Latent Heat Materials, 1983, CRC Press.
- 4. Mehling H & Cabeza L, Heat and Cold Storage with PCM, 2008, Springer
- 5. Sharma et al, Review on thermal energy storage with Phase Change Materials and applications, 2009, Renewable and Sustainable Energy Reviews 13 (2009) 318–345
- 6. Zalba et al, *Review on thermal energy storage with phase change materials, heat transfer analysis and applications*, 2003, Applied Thermal Engineering 23 (2003) 251–283
- 7. Zhou et al, *Review on thermal energy storage with phase change materials (PCMs) in building applications*, 2011, Applied Energy.
- 8. Kuznik et al, *A review on PCM integrated in building walls*, 2011, Renewable and Sustainable Energy Reviews 15 (2011) 379–391
- 9. U. Stritih & P. Novak, Solar heat storage wall for building ventilation, WREC 1996
- 10. Ibanez et al, An approach to the simulation of PCMs in building applications using TRNSYS, 2005, Applied Thermal Engineering 25 (2005) 1796–1807
- 11. Chen et al, A new kind of Phase Change Material (PCM) for wallboard ,2008, Energy and Buildings 40 (2008) 882–890
- 12. Pasupathy et al, *Phase Change Material based building architecture for thermal management ain residential and commercial establishments*, 2008, Renewable and Sustainable Energy Reviews 12 (2008) 39–64
- 13.Zhu et al, *Dynamic characteristics and energy performance of buildings using phase change materials*, 2009, Energy Conversion and Management 50 (2009) 3169–3181
- 14.Zhuang et al, Validation of veracity on simulating the indoor temperature in PCM light weight buildings by EnergyPlus, 2010.
- 15. Pederson, 2007, Advanced zone simulation in EnergyPlus: Incorporation of variable properties and Phase Change Material capability, Proceedings: Building Simulation 2007.
- 16.Lee, et al, Analysis of the dynamic thermal performance of fiberous insulations containing phase change materials, 2010